
Selection on Finite Sites under COmplex Demographic Events

(SFS CODE)

Ryan D. Hernandez
Draft date: November 27, 2007

1 Preface

This is the user’s guide to SFS CODE. It outlines how to compile and use the program, but does not
delve into many of the details regarding specific algorithms used or the underlying data structures
implemented in the C source code. A subsequent verbose version (more of an owner’s manual) of
this document will be made available in the near future, and will delve into the gory details of
how SFS CODE works and is implemented. The verbose version will also include many examples
and several unpublished simulation results that have been used to guide my intuition in population
genetics, and will hopefully help you understand how to effectively use SFS CODE. Table 5 on page 29
outlines every option implemented in SFS CODE, in includes a page reference indicating where each
option was described in the text.

Please note that this program is free software: you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free Software Foundation, either
version 3 of the License, or (at your option) any later version. This program is distributed in the
hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty
of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
Public License for more details. A copy of the GNU General Public License should be in the folder
doc that was distributed with this program. If not, see <http://www.gnu.org/licenses/>.

2 Overview

The program that this document is dedicated to can be described in a single run-on sentence as
follows:

SFS CODE is a Wright-Fisher style forward population genetic simulation program for
finite-site mutation models with selection, recombination, and demography.

This means that an entire population of individuals (and all their chromosomes) is followed gener-
ation by generation, from the beginning of the simulation to the time of sampling. This is contrary
to coalescent simulations [such as ms; Hudson (2002)], where the history of a sample is simulated
backward in time until its founder. SFS CODE has the ability to simulate finite-site mutation models
(meaning that some sites can receive several mutations). Nonetheless, SFS CODE actually stores all
mutations that are either segregating or fixed in at least one of the populations, so it can also act
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like an infinite-sites simulation program. However, its purpose is to generate a set of DNA sequences
(an alignment) that can then be analyzed. This alignment, by the nature of the simulation, can
therefore contain sites that have been the target of many mutations (as well as repeatedly being
selected upon).

As described in further detail in subsequent sections, SFS CODE allows the user to simulate
highly detailed populations, with at least as much flexibility as ms. In addition to allowing for
fairly complex demographic effects and migration schemes, SFS CODE also allows the user to simulate
coding versus non-coding regions, apply a distribution of selective effects to new mutations, generate
domesticated populations, assume different male and female population sizes, linked and unlinked
loci, sex and autosomal chromosomes, polyploids (haploid, diploid, or tetraploid), as well as a suite
of built in or custom mutation models.

The basic algorithm used in this program is as follows:

1. Sample a sequence from the stationary distribution of the mutation model.

2. Burn-in a single population to mutation/selection balance.

3. Perform demographic and other evolutionary events.

4. Sample individuals from populations.

Each generation consists of the following components:

1. Produce each individual by randomly sampling a mother and a father from the previous
generation (with replacement according to their relative fitness for their sex, unless simulating
haploids, in which case there is no sex).

2. Randomly select individuals to migrate among populations.

3. Distribute a Poisson number of recombination/mutation events.

3 Getting Started

3.1 Compiling the Program

This section is only if you have downloaded the source code and wish to compile the program
yourself. If you are using the web-based version of the program, then you can skip this section.

After obtaining and unzipping the distribution of this program, you will have a folder called
SFS CODE. Inside this folder, you will find (at least) two subdirectories src and doc. In the subdirec-
tory src, you should find a makefile, along with several more subdirectories. The makefile will
be used to compile all the programs provided with this distribution. It uses GNU’s gcc compiler.
Using your favorite command line terminal (Windows users should download and install Cygwin
from http://www.cygwin.com), change directory to SFS CODE/src/, and type make. This will cre-
ate the directory SFS CODE/bin/, which will contain the executables sfs code, convertSFS CODE,
as well as any other programs in the current distribution.

If you get compiling errors, it is likely that either you do not have gcc installed, or the
optimization flag -fast is not implemented for your operating system. If it is the former, then
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make sure you need to install gcc, or change the makefile to use your favorite compiler. If you
are using Cygwin, you may need to update your version, making sure to install gcc. If it is the
latter (or you get strange “Illegal instruction” errors at runtime), open the makefile using your
favorite text editor (NOT Word, as you don’t want to accidentally add any formatting flags to
the file). Scroll down to about line 11, where it says CFLAGS = ... -fast. Replace the text
“-fast” optimization flag with “-O3”. Now proceed as before. If there are still problems, contact
the author, and inform him of the system you are using. Note, if you are planning to use the Intel
compiler, you may need to edit the source code sfs code.c by uncommenting the very first line
(this enables functions that Intel deems as “safe” but are not part of the standard C library, and
will get rid of annoying warning messages).

3.2 Usage: Arguments at the Command Line

SFS CODE is a command-line program. If you have already compiled the program, then you should
be ready to go. Change directory to SFS CODE/bin. A full list of options can be found in Table 5
on page 29.

The basic command to run SFS CODE is as follows:

sfs code <Npops> <Niter> [<options> [arguments]]

Where <Npops> is the total number of populations you want to simulate, and <Niter> is the total
number of iterations you want to run. In this documentation, arguments and options that are
enclosed in <angled brackets> are required, and those in [square brackets] are optional. Subse-
quently, those in both angled and square brackets can be required in some potentially optional
instances (e.g. [<options>...], if you include anything after <Niter> then they must be options,
which may contain required and/or optional arguments).

In SFS CODE, all options have both a long name and a short name, except for timed
events (beginning with ‘-T’, described later, and only use the short name). For example, to set the
mutation rate, you could use either “-t θ” or “--theta θ” to achieve the same result. Though
both long and short names are case-sensitive, long names are of arbitrary length and tend to be
more descriptive of the option. Short names are a single letter. Note that long names are preceded
by two dashes (“--”) while short names are preceded by only a single dash (“-”). Both the long
and short names of all options are provided in Table 5 on page 29.

In the text of this document, I will provide templates for each option, as well as numbered
examples. In option templates, I will first give the long name, then the short name in parenthesis,
followed by the format of its arguments, as in the following pattern:

--long name (-short name) [arguments]

As a first example, the help menu can be obtained using the option

--help (-h) help menu

This means you would access the help menu by typing “./sfs code 1 1 -h”. In this special
example, the number of populations and number of iterations do not need to be specified, so you
could just type “./sfs code --help” or “./sfs code -h”.
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4 Running SFS CODE

The most basic simulation is the following:

Ex. 1. $ ./sfs code 1 1

Typing example 1 (excluding the $, which just represents the bash shell; in Windows, you also might
not need the “./” bit either) into the command prompt will result in running a single iteration
of the default simulation. The default parameter values are given in section 10 toward the end
of the documentation, and consists of simulating sequences of length 5000 nucleotide base pairs
(5kb) from a “standard neutral” population of 500 diploid individuals, where the population scaled
mutation rate θ = 0.001/site with no recombination, from which a sample of 6 individuals will be
drawn. By “standard neutral” population, I am referring to a population that is devoid of every
evolutionary force other than mutation and drift. The full list of default parameter values is given
in the Default Parameters section below.

The mutation rate per site (θ = 4Neµ, for a diploid population) can easily be increased to
a value of 0.01 per site using the option --theta (-t) <θ> as follows:mutation

rate
Ex. 2. $ ./sfs code 1 1 -t 0.01

Recombination is just as easy to incorporate using the --rho (-r) <ρ> option, whererecombination
rate ρ = 4Ner is the population scaled rate of recombination between adjacent sites for a diploid

population. For example, the following would simulate a standard neutral population with per site
mutation and recombination rates equal to 0.01.

Ex. 3. $ ./sfs code 1 1 -t 0.01 -r 0.01

In general, you will want to do several (perhaps several thousand) simulations. Doing so
requires some patience (this is a forward simulation, after all). However, multiple simulations
can be performed at once by changing the parameter <Niter>. Doing multiple simulations thismultiple

iterations way is beneficial, as compared to running them all independently, because SFS CODE is able to take
advantage of all the effort that went into all the previous burn-in periods. After an extensive initial
burn-in period, the population will be at stationarity. It is much easier to obtain an independent
draw from a population at stationarity than it is to reach stationarity. Figure 1 shows how this is
done.

The default initial burn-in time is 5×PN generations, while subsequent burn-in periods are
only 2×PN . You can change the initial burn-in time using

--BURN (-B) <burn>change
initial

burn-in
time

and change the subsequent burn-in periods (for iterations > 1) using

--BURN2 (-b) <burn>change
subsequent

burn-in
times

This would set the initial or subsequent burn-in times to <burn>×PN generations.

In SFS CODE, it is also possible to simulate an arbitrary number of loci (linked or unlinked)
of arbitrary length using the following option.
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--length (-L) <nloci> <L1> [<L2>...<Lnloci>] [R] number of
loci &
lengthThis option allows you to simulate <nloci>. The first locus will have length <L1>. You can stop

here to set all loci to the same length. Otherwise, you have two options. You can specify each of
<L2>...<Lnloci> to set the lengths of each locus, or if you have a repeating pattern (e.g. a short
locus followed by a long one) you can specify a subset of lengths followed by the character ‘R’. For
example, if you want to simulate 4 loci, with lengths (500bp, 1kb, 500bp, 1kb), then you could use
either of the following commands.

Ex. 4. $ ./sfs code 1 1 -L 4 500 1000 500 1000
$ ./sfs code 1 1 -L 4 500 1000 R

You can change the linkage among loci using the next option.

--linkage (-l) <p/g> <d1> [<d2>...<dnloci-1>] [R] linkage
among loci

The first argument to this option must either be ‘p’ or ‘g’, indicating whether the distance between
loci will be be <p>hysical distance (in basepairs) or <g>enetic distance (recombination fraction).
The second argument is the distance between the first two loci. This is all you need if you want all
adjacent loci to have the same distance. Otherwise, (again) you have two options. You can either
specify the distance between each pair of adjacent loci (i.e. provide <nloci>-1 values), or, if you
have a repeating linkage structure you can specify a subset of distances followed by the character ‘R’.
For independent loci, you can use “--linkage p -1” or “--linkage g 0.5”. As an example,
consider simulating 2 independent genes, each having 4 exons with lengths as in example 4 that
are equally spaced with 2kb introns. You could simulate this as follows.

Long burn-in
Short steps

between iterations

Independent starting
 points for each

iteration

τ=0

τ=τE

Figure 1: Simulating multiple iterations in SFS CODE begins with a long burn-in time, followed
by relatively short steps (∼ 2PN generations) between each iteration. Ancestral information at
the beginning of each iteration is stored, such that the each starting point is a random draw of
a population at mutation/selection/drift balance (each iteration uses the burn-in of all previous
iterations).
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Ex. 5. $ ./sfs code 1 1 -L 8 500 1000 R -l p 2000 2000 2000 -1 R

Moreover, you can annotate each locus as being either coding or non-coding, and sex or
autosomal. By default all loci are autosomal coding regions. If you would like to specify whether
each locus is coding or not, use the following option:

--annotate (-a) <a1> [<a2>..<aR>] [R]annotate
coding/non-

coding where ai = ‘C’ or ‘N’ to indicate that the ith locus is coding or non-coding (respectively). If you
want all loci to have have the same coding/non-coding annotation, just specify <a1>. Otherwise,
you can either specify the annotation of all R loci, or specify the pattern to be repeated followed
by the character ‘R’. To specify whether each locus is sex or autosomal, use the following option:

--sex (-x) <x1> [<x2>..<xR>] [R]annotate
sex/autosome

which has the same structure as option --annotate, but xi = ‘0’ or ‘1’ to represent autosome or
X-linked (respectively).

Note that options --linkage, --annotate, and --sex must be specified after indicating the
number of loci to simulate using option -L.

The ancestral population size used in a population genetic simulation is not as important
as one might imagine (so long as all parameters are population-scaled, the actual size cancels).
However, it can be changed from the default of 500 using the following option.

--popSize (-N) [P <pop>] <size>population
size

This option would set the ancestral population size to the value <size>. For efficiency sake,
the value you use should be kept as small as possible (but no smaller!!). The default is 500
diploid individuals, which should be sufficient for most purposes. However, if you are simulating a
distribution of selective effects where the mean of the distribution is greater than the population size
(in absolute value), then the entire population might go extinct. A realistic distribution inferred
from human polymorphism data might induce such an effect.

4.1 Population Expansions and Bottlenecks

Natural populations fluctuate in population size, and any simulation program should accommodate
this biological feature. However, it is often not necessary to simulate the exact trajectory of the
population size, just the major trends (i.e. the time of an expansion, or the severity of a contraction
along with the degree of recovery). SFS CODE implements four demographic events:

1. set the population size to a new value:

-TN <τ> [P <pop>] <Nnew>population
size change

2. change the population size by a relative amount (ν = Nnew/Nold):

-Td <τ> [P <pop>] <ν>relative
size change
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3. allow the population size to start changing exponentially:

-Tg <τ> [P <pop>] <α> exponential
growth

4. or commence logistic growth/decay:

-Tk <τ> [P <pop>] <K> <r> logistic
growth

Each of these options begin with ‘-T’. This indicates to SFS CODE that an evolutionary event will
occur at a specific time (<τ>, the first argument). The next character (one of ‘N’, ‘d’, ‘g’, or ‘k’)
indicates the type of demographic event (NOTE: only short names are accepted for timed events).
The first argument for these options is the time parameter <τ>. Time is scaled by the effective
size of the ancestral population (essentially the number of generations since the end of the burn-in
divided by the number of chromosomes in the ancestral population). Next there is an optional
parameter that would allow you to specify a specific population. If you want the demographic
event to be applied to all populations (or you are only simulating a single population), then this
is not necessary. Otherwise, if you only want to apply the demographic effect to population 0 (see
description below on how to simulate multiple populations), then you would use ‘P 0’ here. Using
the character ‘P’ in your command tells SFS CODE that the next parameter is a population and not
the value for the size change effect.

Finally, if you are using ‘-TN’ include the new size of the population <Nnew>. If you are
using ‘-Td’ include the relative size change <ν> = new size/current size (note that current size is
NOT necessarily the ancestral size if you have multiple changes). If you are using ‘-Tg’ include the
exponential rate of growth/decay <α>. The parameter α determines the size of the population at
time t by the equation N(t) = N0e

α(t−τ), where time is scaled by PNA (the number of chromosomes
in the ancestral population, n.b. in a diploid population P = 2), τ is the time that the population
size started changing, and N0 is the size of the population when it started changing (not necessarily
the ancestral size!). This implies that if you want the population to grow from N0 individuals to
NF individuals in (t − τ)×PNA generations, you would invert the exponential equation to find
α = ln

(
NF
NA

)
/(t − τ). If you are using ‘-Tk’ for logistic growth, include the carrying capacity

<K> (the final population size) and the rate to approach it <r>. For logistic growth, the size of the
population at time t is determined by the equation N(t) = KNAer(t−τ)

K+NA(er(t−τ)−1)
.

SFS CODE is a forward simulation program, so it thinks about time going forward. You can
think of the burn-in period as “negative time”, with the simulation actually starting at time zero
(when the burn-in ends), and progressing forward in generations. Rather than referencing a specific
number of generations, however, time is referenced in terms of PNA generations, where NA is the
ancestral (original) population size and P is the ploidy (if you are simulating a diploid population,
then P = 2 [the default], while P = 1 for a haploid population and P = 4 is a tetraploid population).
You can change the ploidy using the following option:

--ploidy (-P) <P> ploidy

where P can be 1, 2, or 4. If P=4, you can specify either autotetraploid population or allotetraploid
using

--tetraType (-p) <0/1> type of
tetraploid
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where 0 indicates auto- and 1 indicates allotetraploid.

Keep in mind that the time scaling does not change as the population sizes change (though
the amount of evolution taking place each generation can be considerably different). This is similar
to ms, but instead of having a diploid time scaled in units of 4N0 generations (with N0 the size at
the time of sampling), SFS CODE would scale time in units of 2NA generations.

In SFS CODE, it is also necessary to tell the simulation program when to end using the option

-TE <τ> [pop]ending
simulation

where again, time (τ) is scaled in units of PN0 generations. In the simple applications above, the
simulation actually ended when the burn-in period was over (i.e. at time τ = 0). In general, you
can end the simulation for any population at any time (useful for generating samples from now
extinct populations, such as neandertal), but in most situations you will terminate the evolution of
all populations when you sample at the end of the simulation. To be more specific, the simulation
ends when the last evolutionary event takes place. The “-TE” option just allows you to put a place
holder until a specific generation.

If you want to simulate a model for an African population of humans, you might consider a
simple 2-epoch model, where there was a constant ancestral population size (NA) which instanta-
neously changed by a factor ν = NC/NA some time τ ago (in units of 2NA generations). A diagram
of this model is shown in figure 2. To implement this model in SFS CODE, you would consider time
during which the population has its ancestral size as the burn-in period. At the end of the burn-in
period, the population instantaneously grows by a factor ν, and maintains the new size for 2NAτ
generations, when the simulation ends. Abstractly, this is implemented in SFS CODE as

Ex. 6. $ ./sfs code 1 1 -Td 0 ν -TE τ

Notice that the demographic event actually occurs at time zero, with the population maintain-
ing it’s new size for τ units of time until the simulation ends. The parameters of such a model were
inferred by Boyko et al. (2007) using synonymous SNPs across the human genome from an African
American (AA) population. Their inferred demographic model is shown in figure 2. Simulating
the AA demographic history using their inferred parameters is easy:

Ex. 7. $ ./sfs code 1 1 -Td 0 3.3 -TE 0.4377

The equivalent command in ms would be:

ms 12 1 -t 16.5 -eN 0.066 0.303.

Note that ms requires θ = 16.5. This ensures that the ancestral population has θ = 5, which is the
case for the SFS CODE simulations (θ/per site = 0.001 across 5kb).

A simple demographic model for European populations is a 3-epoch bottleneck model. This
model is also shown in figure 2, and consists of an ancestral population size (NA), a bottlenecked
population size (NB), and a current population size (NC). In SFS CODE, generations begin accumu-
lating when the first demographic event occurs (i.e. τ = 0, when the population decreases in size).
The second demographic event occurs at the end of the bottleneck (τ2

→ = 7703gen./(2NA) = 0.48),
and the simulation ends at τE

→ = 8577gen./(2NA) = 0.54. Given these parameters, this model is
also straightforward to implement:
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Ex. 8. $ ./sfs code 1 1 -Td 0 0.722 -Td 0.48 5.27 -TE 0.54

The corresponding command in ms would be:

ms 12 1 -t 19.02 -eN 0.00728 0.19 -eN 0.0714 0.263.

You can increase the sample size using the option

--sampSize (-n) [P <pop>] <SS1> [<SS2>...<SSNpops>] sample size

If you are only simulating a single population or you want to sample the same number of individuals
from each population, then you can simply use “-n <SS>”. If you want to set a specific sample
size for each of n populations, use “-n <SS1>...<SSn>”. Alternatively, if you just want to change
the sample size of population i, then use “-n P i <SSi>”. Note that individuals are sampled, so
if you simulate a diploid population (P=2), then 2 chromosomes will be printed at each locus for
each individual.

African

NA=7778

NC=25636

t=0 t=6809

ν→= 3.3
ν←= 0.303

τ→
E = 0.4377

τ←= 0.066

European

NA=7895
NB=5699

NC=30030

t=0 t=7703 t=8577

ν→
1 = 0.722

ν←
1 = 0.263

ν→
2 = 5.27

ν←
2 = 0.19

τ→
E = 0.54τ→

1 = 0.48
τ←

1 = 0.0073τ←
2 = 0.0714

Figure 2: The simple demographic scenarios considered considered in section 4.1. Parameters (τ
and ν) with subscript → are for SFS CODE (forward time), while those with subscript ← are for
ms (pastward time). The horizontal axis represents time in generations (with t = 0 at the first
demographic event). To obtain τ→, divide the accumulated number of generations by (2×NA). To
obtain ν→ divide the new population size by the current population size at each transition. This
methodology differs from ms, where the population size at time of sampling is generally the base.
The number of generations and the effective population sizes for both populations were inferred by
Boyko et al. (2007).

4.2 Distribution of Selective Effects

One of the many important components of a forward population genetic simulation program is
natural selection. SFS CODE assumes a simple multiplicative model of genic selection. This means
that the fitness of an individual is just the product of the fitness effects of each mutation they
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carry. In general, a new mutation will have fitness 1 + s, where s is the selective effect (s > 0
indicates positive selection, s < 0 indicates negative selection, and s = 0 indicates neutrality). An
individual that is homozygous for such a mutation would then have fitness (1 + s)2. The selection
coefficient is related to the population scaled selection coefficient γ = 2Nes. Because population
genetic theory is generally based on inference of γ, SFS CODE draws γ from a specified distribution
(discussed below), then divides it by PNC, the number of chromosomes in the population when the
mutation arises (note that P is the ploidy, which is 2 for the default diploid population). SFS CODE
then uses s to determine the fitness of each individual, and normalizes by the mean fitness in the
population.

It is important to note that SFS CODE only implements shift models of selection. This means
that as soon as a selected mutation is fixed in the population, the fitness effect of the site returns to
1. This avoids problems such as Muller’s Ratchet, where the accumulation of deleterious mutations
drives the population into the ground. Shift models are also in contrast to models such as the
House of Cards model that was developed by T. Ohta in the 1960s (whereby assuming a normal
distribution of selective effects will eventually lead to the fixation of an allele with selective effect
≥ 8 standard deviations above the mean, at which point evolution nearly halts).

You can specify the distribution of selective effects using the following option:

--selDistType (-W) [P <pop>] [L <locus>] <type> [args]selective
effects

where <type> [args] are outlined in Table 1 on page 10, and the optional flags ‘P’ and ‘L’ allow
you to specify a single population or locus (respectively, if simulating more than one population
or locus). For example, to simulate rampant positive selection, where all new nonsynonymous
mutations have γ = 5.0, you would use

Ex. 9. $ ./sfs code 1 1 -W 1 5.0 1.0 0.0

To simulate a situation in which 70% of new nonsynonymous mutations are deleterious with γ = −5,
10% are advantageous with γ = 5, and the remainder are neutral, you would use:

Ex. 10. $ ./sfs code 1 1 -W 1 5.0 0.1 0.7

Table 1: Selection: arguments for option --selDistType (-W)

<type> [args] description
0 ∅ Neutral (gamma = 0 for all mutations).

1 <GAMMA> <p pos> <p neg>

3-point mass model. Single γ (> 0) for both deleterious
and advantageous mutations. With probability <p pos>
the sign is positive, with probability <p neg> it is negative,
otherwise with probability 1-<p pos>-<p neg>, γ = 0.

2 <p pos> <aP> <lP> <aN> <lN>
Gamma (Γ) distributions. With probability <p pos>
γ ∼ Γ(<aP>,<lP>) (mean = aP/lP, var. = aP/lP2), other-
wise γ ∼ -Γ(<aN>, <lN>).

3 <mean> <var>
Normal distribution. Mean = <mean> and variance =
<var>.

4 ∅ Advanced option. Predefine distribution in file gencon-
textfreq.c, see text.
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For a more complicated scenario, in which you want a distribution of positive and negative
selection, we have <type>=2, which implements a mixture of Gamma distributions (Γ(·)), one that
corresponds to positive values of γ and one that has been reflected across the y-axis to capture a
distribution of negative values. For example, if you want to assume that 90% of new nonsynonymous
mutations are deleterious with a selection coefficient drawn from Γ(1, 1) (a simple exponential
distribution) and the remaining 10% are advantageous and drawn from Γ(50, 10) (having mean =
5 and variance = 0.5), then you could use the following example.

Ex. 11. $ ./sfs code 1 1 -W 2 0.1 50.0 10.0 1.0 1.0

Note that for example 11, the distribution of deleterious effects reduces to an exponential distri-
bution, while the distribution of advantageous effects has a mean and mode at 5. This mixture
distribution is shown in figure 3. Of course if you simply want a Γ-distribution of negative selection
(assuming no positive selection), then you can simply set <p pos> = 0.

The fourth <type> (number 3), is a simple normal distribution. With a mean of zero, Cutler
(2000) refers to the normal distribution of selective effects a model of positive selection. This
is because on average, half of the new mutations will be advantageous, and a majority of the
deleterious mutations will be eliminated.

The final <type> of model for the distribution of selective effects is an “advanced” option. For
this option, you can create as complicated a distribution as you’d like in another statistical package
(R, for example). This distribution can be discretized into 100 bins of equal density (using the
quantile function in R, for example). These 100 bins are then copied into the vector fitQuant that
is stored in the file gencontextrate.c. After changing this vector, the program must be recompiled
(this is the only reason that it is referred to as an “advanced” option... more realistically, it is a
rudimentary option that requires more work, but provides the ultimate flexibility). This model
is actually preferred to <type>=2, as it is much quicker to randomly sample from a discretized
distribution than it is to draw from a mixture of Γ-distributions. However, population size changes
cannot be accommodated with this option.

It is also possible to specify that one population remain a neutral population. This can be
useful if you want to specify a common distribution of selective effects for all populations but one.
This is done using

--neutPop (-w) <pop> neutral
population

Selective Effects with Demography

When population sizes change, the relative effect of selection changes (selection is stronger in a
larger population). This is accommodated by altering the distribution of the population scaled
selection coefficient. For constant (type 1) and normal distributions (type 3) this is easily accom-
modated by adjusting the mean. For a mixture of Gamma distributions (type 2), the λN and λP

parameters are adjusted such that the new means correspond to the change in population size. This
also affects the variance, in accordance with the Gamma distribution. However, for the custom dis-
tribution of selection coefficients (type 4), population demography cannot be accommodated. If a
custom distribution of selection coefficients is used and the population sizes change, then the same
distribution of γ will be used (thereby inflating/deflating s to maintain a constant value of γ).
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Figure 3: A distribution of selection coefficients, where 90% of new mutations would be deleterious
with γ ∼ −Γ(0.231, 0.1279), and the remaining are drawn from γ ∼ Γ(50, 10).

Selective Constraint

In the way that Kimura outlined the neutral model of evolution, some proportion of nonsynonymous
mutations are completely lethal, and never contribute to polymorphism. All other nonsynonymous
mutations were completely neutral, and had no selective effect at all. As a result, it is often of
interest to simulate data under such a neutral model (or allowing some proportion of nonsynony-
mous mutations to be lethal in general while the remaining nonsynonymous mutations follow the
specified distribution of selective effects). This also generalizes to non-coding regions, where some
proportion of mutations can be lethal. In Kimura’s model, the parameter f0 represents the propor-
tion of neutral mutations. In SFS CODE, you can adjust the non-lethality parameter using the
following command.

--constraint (-c) [P <pop>] [L <locus>] <f0>non-lethal
mutation

rate This option can even be used when simulating non-neutral models of evolution, as a way of signifying
that only some mutations will contribute to polymorphism.

The way this option works, is that for each nonsynonymous or non-coding mutation, with
probability 1− f0, the fitness effect will be -1. This effectively sets the fitness of the individual to
zero (as the fitness of the individual is defined as 1 + s). This means that any mutations that are
unique to this individual will also be lost in the next generation, as it will not pass on any of its
gametes. All synonymous mutations are assumed to be neutral (i.e. none are considered lethal).

4.3 Multiple Populations

In the above examples, we have used exclusively a single population, with <Npops> = 1 as the first
parameter into SFS CODE. If we change this parameter, then we can simulate multiple populations.
Note that populations are numbered from 0 through <Npops>-1.

There are two ways to create new populations. You can either have a speciation event or a
domestication-style event. For a speciation event, one population will be split into two identical
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populations (equal size, etc.). To split population i into two populations (i and j) at time τ , you
use the following template.

-TS <τ> <i> <j> speciation
events

For a domestication event, one population (i) will be split into two (i and j), but the second
population will primarily be composed of individuals that carry a particular derived allele, chosen
at random from all the alleles that have a specified frequency (within 5% of <allele freq>).
After choosing a particular allele from the founding population, SFS CODE will randomly sample
individuals that are homozygous for the allele. If there are not enough homozygous individuals,
then it will choose from the heterozygous individuals. If there are still insufficient individuals, then
it will randomly choose non-carriers, until the specified population size, <N> is reached (note that
<N> must be less than the size of the parent population i). The template for this option is as
follows.

-TD <τ> <i> <j> <allele freq> <N> [locus] domestication
events

If a locus is specified, then SFS CODE will try to find an allele in that particular locus (not necessary
if only simulating a single locus). If locus is not specified, then SFS CODE will start at the center-
most locus that is simulated. If there isn’t an allele near the specified allele freq, SFS CODE will
search adjacent loci until one is found. Failing to find any mutations at the specified frequency,
SFS CODE will select the allele that is closest in frequency.

Now that multiple populations have been initialized, it is essential to tell SFS CODE when
to end the simulation. This was mentioned above with regards to demographic effects, but is
worth mentioning again. This is done using the familiar option -TE <τ> [pop]. As an example,
say you wanted to simulate human polymorphism data with a chimpanzee outgroup (assuming a
population scaled divergence time of τ = 10 and an allopatric speciation event). You could use the
following:

Ex. 12. $ ./sfs code 2 1 -TS 0 0 1 -TE 10

This example would first generate a single population at stationarity during the burn-in. At the
end of the burn-in (τ = 0), the population would be split into two identical populations, which
would evolve independently until the end of the simulation (τ = 10).

As an example of a domestication event, consider a model for dog breed formation, where
you also want to simulate the ancestral dog population. This model is characterized by a major
bottleneck in the ancestral population followed by rapid growth. Then, after growing for some time,
2 new breeds (of size 100 and 10) are formed using alleles at frequency 0.1 and 0.01 (respectively) in
the ancestral population. These new breeds are then simulated for 0.1×2×500 = 100 generations.

Ex. 13. $ sfs code 3 1 -Td 0.0 P 0 .1 -Tg 0 P 0 2 -TD 2.5 0 1 0.1 100 \
-TD 2.5 0 2 0.01 10 -Tg 2.5 P 1 10 -Tg 2.5 P 2 15 -TE 2.6

Let’s walk through this example step by step. First, sfs code 3 1 indicates that we are going to
simulate a total of 3 populations for 1 iteration. Next -Td 0.0 P 0 .1 indicates that there is going
to be a demographic event at the end of the burn-in period for population 0. This demographic
event will shrink the population to 1/10th its size. After the major contraction, -Tg 0 P 0 2
indicates that population 0 will start exponentially growing at a rate of 2 per generation (the
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backslash ‘\’ indicates that the command stretches onto the next line and can be ignored). Then,
after 2.5 units of time, two new breeds are formed from this ancestral breed. Population 1 is created
by -TD 2.5 0 1 0.1 100, indicating that an allele at frequency 0.1 in the parental population was
used to form a population of 100 individuals. Population 2 is created by -TD 2.5 0 2 0.01 10,
indicating that an allele at frequency 0.01 is used to form a population of size 10. Both breeds
then start growing at an exponential rate (population 1 at a rate of 10, while population 2 grows
at a rate of 15). Then, after another 0.1 units of time (100 generations, or approximately 200-300
years), the simulation ends and we draw the default of 6 individuals from each population. This
simulation takes less than 5 seconds on a 2.33 GHz Intel Core 2 Duo MacBook Pro.

Migration

Individuals are free to migrate to any extant populations. The migration rate matrix indicates the
average number of individuals in each population that are composed of individuals from each of
the other populations. For the migration matrix M, the (i, j) entry mi,j represents the expected
number of individuals in population i that came from population j (this is also referred to as
the “backward migration rate matrix”). To set the migration rate, you would use the command
--migMat (-m). There are three ways to set the values of the migration matrix, indicated by themigration

rates first argument to the option being either ‘A’, ‘P’, or ‘L’. You can set All entries to be the same
value M:

--migMat (-m) A <M>all rates
equal

Note that this option specifies a symmetric island model, where the number of migrants into
population i is M . So, for <NPOP>=3, there would be M/2 migrants from both of the other two
populations. You can also set the migration rates explicitly from one Population to another:

--migMat (-m) P <Pto> <Pfrom> <M>population
specific

which would specify that the average number of migrants into population Pto from Pfrom is M.
Finally, you can List the entire migration matrix:

--migMat (-m) L <M0,1>...<MNPOP,NPOP-1>list all
matrix
entries which would set each entry of the matrix. Note that the diagonal entries are not specified. For

example, if you have 3 populations and want to use option ‘L’, you should specify all 6 entries:
M0,1,M0,2,M1,0,M1,2,M2,0,M2,1.

In SFS CODE, a Poisson number of individuals are chosen to migrate from population j to
population i each generation with expected value Mi,j . Each migrant out of population j will be
male with probability pMaleMig. You can set the male migration rate using

--pMaleMig (-y) [P <pop>] <pmale>male
migration

rate By default, pmale=1-propFemale, corresponding to the proportion of males in the originating popu-
lation. By default, this is 0.5, but you can change the proportion of females in a population
using

--propFemale (-f) [P <pop>] <pf>proportion
of females

This can be set for all populations simultaneously, or for a given population explicitly.

14



4.4 Mutation Models

There are 6 mutation models built into SFS CODE. The basic initiation of a mutation model is as
follows.

--substMod (-M) <mod> [args] substitution
model

Table 2 outlines the models and arguments for this option. The most basic mutation model
(<mod> = 0) was proposed by Jukes and Cantor (1969), and referred to as JC69. This model
assumes that the rate of mutation is equal among all nucleotides. A simple modification of this
model was proposed by Kimura (1980) to account for the observation that most mutations tend
to be transitions (A↔G or C↔T). This model (<mod> = 2) adds another parameter (the transi-
tion/transversion bias, κ), and is referred to as the Kimura 2-parameter model (or just K2P). An
extension of the K2P model would be to allow a transition/transversion bias for each nucleotide (i.e.
the rate of A→G is not equal to the rate of C→T). Zhang and Gerstein (2003) fit the parameters
of such a model to human data. This model has been implemented in SFS CODE as <mod> = 4.

One feature of mammalian genomes is the presence of hypermutable CpGs (due to the deam-
ination of methylated C’s that are immediately 5’ of a G). SFS CODE implements a CpG extension
to both the JC69 model and the K2P model (<mod> = 1 and 3, respectively). This is implemented
by rejecting mutations at non-CpG sites with probability <PSI>. Given a non-CpG site is rejected,
a new site will be picked to mutate until either finding a CpG or accepting a non-CpG site. Once
accepting a site to mutate, it will either mutate to a new nucleotide randomly (in the case of
<mod>=1) or to a transitional nucleotide at a rate equal to <κ> (in the case of <mod>=3). For
substitution models 1, 2, and 3, the mutation parameters (ψ and κ) can also be set for a single
population using the following option.

--KAPPA (-K) [P <pop>] <κ> set the
value of κ

--PSI (-C) [P <pop>] <ψ> set the
value of ψ

The most detailed model that is implemented in SFS CODE is <mod>=5. This is a full context-
dependent substitution model, where the site-specific rate of mutation depends on both of its
adjacent nucleotides. This accounts for mutation rate variation due to CpGs as well as other
context-effects found by Hwang and Green (2004). Conditional on picking a site to mutate, the
replacement nucleotide will also depend on the flanking nucleotides. Choosing a new site to mutate
is done using an inverse-CDF method, where relative hit-probabilities are defined by the cumulative
site-specific mutation rates.

More generally, any trinucleotide substitution model can be used by updating the 64×4 rate
matrix Q in the file gencontextrate.h and recompiling the program.

While SFS CODE is based on simulating finitely many sites, it is also possible to simulate data
under a pseudo-infinitely many sites model. It is pseudo because multiple hits can occur, but no
more than one mutation will be segregating at a site at any given time. This is specified using the
following option.

--INF SITES (-I) infinite
sites model
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Table 2: Mutation models: arguments for option --substMod

<mod> [args] description

0 ∅ JC69 model of equal mutation rates to and from all
nucleotides.

1 <ψ>
JC69+CpG Simple model of hypermutable CpGs,
where <ψ> is the non-CpG rejection rate.

2 <κ>
Kimura 2-parameter model, with <KAPPA> the
transition-transversion bias.

3 <κ> <ψ> K2P+CpG combining model 1 and 2.

4 ∅
ZG2003 the generalized K2P model, where each nu-
cleotide has its own transition/transversion bias (all pa-
rameters inferred by Zhang and Gerstein (2003)).

5 ∅

Context-Dependent model, where the mutation rate
at each nucleotide depends on both of its adjacent
neighbors (all parameters inferred by Hwang and Green
(2004)). This is the model SFS CODE was named after.

Mutation Rate Variation Across Sites and Loci

Context-dependent mutation models impose mutation rate variation along a sequence. However,
not all species show evidence for such a mutation process (e.g. Drosophila), despite having mu-
tation rate variation. For such species, mutation rate variation has in the past been modeled as
a discretized Γ distribution across sites. SFS CODE allows you to simulate under such a model,
allowing both sites as well as loci to have a mutation rate scaled by a discretized Γ distribution
(with mean 1). These are implemented in the following options.

--rateClassSites (-V) [P <pop>] <nclasses> <α>mutation
rate

variation
across sites

& loci

--rateClassLoci (-v) [P <pop>] <nclasses> <α>

These options allow you to specify a certain number of mutation rate classes (nclasses), which will
be drawn from a Γ(α, α) distribution (having mean 1 and variance 1/α).

4.5 Selfing and Generation-Effects

SFS CODE generally assumes that all populations are randomly mating (subject to their relative
fitnesses). However, in plant species in particular, mating is not random, such that an individual
may be more likely to self-fertilize than to mate with another (an ultimate form of inbreeding). To
accommodate this, SFS CODE allows the user to specify a selfing rate, s, for each population using
the following option.

--self (-i) [P <pop>] <s>selfing rate

Moreover, when simulating multiple species, it will not always be the case that they will have
the same generation time. For example, today, humans have a longer generation time than most
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other primates (especially the non-apes). To account for this, SFS CODE provides a generation effect
option.

--GenEffect (-G) <pop> <G> generation
effects

For the generation effect, G must be an integer (≥ 1 or ≤ −2). If it is positive, then the indicated
population will experience G rounds of mating each generation. If G is negative, then the indicated
population will only have a round of mating every |G| generations. For example, setting G=2
would shrink the generation time by half (leading to 2 rounds of random mating every generation),
while setting G=-2 would double the generation time (leading to one round of random mating every
second generation). At least one population must have G=1.

4.6 Changing Parameters Over Time

In SFS CODE, many of the parameters can be changed at any time during the course of the simulation.
Table 5 outlines all the options that have been implemented in SFS CODE, and any option that has
an asterisk in the short name (third column) can be changed (or initiated) at any time using the
following option.

-T<short name> <τ> [args] timed
events

This means that if you are, for example, studying domesticated rice, and want to model the
transformation to a primarily selfing organism, you might consider a population which starts with
a low selfing rate, but 2N generations ago became 99% selfing. This could be achieved as follows.

Ex. 14. ./sfs code 1 1 -TE 1 -i 0.2 -Ti 0 0.99

Example 14 would simulate data assuming the selfing rate was 0.2 until the burn-in time
ended, at which point the selfing rate would change to 99%. The simulation would then end after
another 2N generations.

When using -T*, the option retains all the functionality as described above and in Table 5.
For example, consider simulating 2 populations, that diverged 10×2N generations ago (i.e. human-
chimp divergence). Suppose you wanted to model recent positive selection (e.g. within the last
2N generations) in the human genome while ancestral populations and chimpanzee are completely
neutral. You might try the following example.

Ex. 15. ./sfs code 2 1 -TS 0 0 1 -TE 10 -TW 9 P 0 1 5 1 0

Example 15 would generate 2 populations, which split at time τ = 0, and evolve independently
for 10×2N generations (-TE 10). However after having diverged for 9×2N generations, all new
nonsynonymous mutations in population 0 would be advantageous with γ = 5. In this case, the
command “-TW 9 P 0 1 5 1 0” literally means change the distribution of selective effects at time
τ = 9 for population 0 to type=1, γ=5, p pos=1, and p neg=0.

Keep in mind that timed events only work with the short names, so you could not use
-TselDistType, for example.
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5 The Non-Effect of the Effective Population Size

One challenge you will face when running forward simulations, is to pick an effective population
size. In coalescent theory, this is a non-issue, as the results have been derived for limiting cases when
the population size tends to infinity while parameters tend to zero, such that the product stays
constant (isn’t it nice that all parameters in population genetics being scaled by the population
size?). However, in forward simulations, the actual population size used can become an issue,
depending on what you are trying to model.

This section shows you that in most situations, the actual population size doesn’t matter.
In general, you should do a few simulations with larger and smaller population sizes to show that
the population size used does not affect your simulations. Failing to do so could lead to a false
interpretation of the results. However, it is always helpful to use the smallest population size
possible, as this will make the simulations run quicker.

We will consider varying the effective population size. This is done using the following
option.

--popSize (-N) [P <pop>] <size>

We will consider populations of size N ∈ {250, 500, 1000, 5000, 10000}. This should give us an
idea of what is going on. We will consider just a couple of statistics: the distribution of the total
number of polymorphisms and the average SFS. We will evaluate populations of constant size, as
well as populations that have recently either grown or shrunk 10-fold (magnitude of change ν = 10
or 0.1, approximately 0.1 × 2N generations ago). We will also consider neutral models as well as
selection under both selDistType 1 and 2 (-W 1 5 0.1 0.8 and -W 2 0.1 50 10 0.23 0.1279,
respectively). Considering just the case of no recombination yields 45 combinations (5 population
sizes × 3 demographic models × 3 selective effects). The general command line looks like the
following example (note that we are sampling 20 diploid individuals, or 40 chromosomes).

Ex. 16. $ ./sfs code 1 2000 -n 20 -N <N> -Td 0 <ν> -TE <τ> \
-W <type> [args]

Figure 4 summarizes the results. As you can see, for these demographic and selective effects,
the effective population size used has no impact on the distribution of SNPs or the
SFS. For the cases shown here, the only reason the curves do not perfectly overlap is because 2000
simulations is insufficient to capture the true distribution. A very similar figure was generated (but
not shown) with recombination (ρ = 0.01/site) with identical results.

6 Sampling From an Extinct Lineage

Recent advances in the extraction of ancient DNA has lead to the partial sequencing of the Ne-
anderthal genome. This allows us to gain further insight into homo relatives, and actually learn
more about our own species. One of the many questions that gains a lot of interest is whether or
not humans mated with Neanderthals, and whether there is any evidence for or against it in our
genomes. Understanding whether or not current statistical methods will have the power to detect
evidence of such mating (or how much migration there would have had to have been to detect it)
lies crucially in the hands of population genetic simulations.
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Figure 4: The non-effect of the effective population size in SFS CODE. Each panel has 5 curves,
corresponding to different values of Ne (shown in legend in the upper-right plot). Each row cor-
responds to a different set of assumptions (demography/selection). Left is the distribution of the
number of segregating sites, and the right is the average SFS across 2000 simulations.
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Assuming that you’ve been able to simulate more than one population, sampling from an
extinct lineage is actually dead easy (pun completely intended). You must simply “kill” one of the
populations using the option -TE <tau> [pop]. Take the following example.

Ex. 17. $ ./sfs code 2 1 -TS 0 0 1 -TE 0.1 0 -TE 0.5

During the burn-in, a single population would reach stationarity. At the end of the burn-in,
the populations would allopatrically split (-TS 0 0 1). After 0.1 × 2N generations, population 0
would effectively die (simulations for this population would stop). All the individuals from this
population are still in memory, but evolution in this population ceases (all individuals would, quite
literally, remain frozen in their prehistoric state). After an additional 0.4 × 2N generations, the
simulation completes. At completion, the default of 6 individuals will be sampled from the extinct
lineage (population 0) and 6 individuals will be sampled from the other population (you could
consider this the human population).

For a slightly more detailed simulation, consider the human-Neanderthal-chimpanzee align-
ment, where only a single individual is chosen from each species. This could be implemented as
follows.

Ex. 18. $ ./sfs code 3 1 -TS 0 0 1 -TS 8 1 2 -TE 9 2 -TE 10 -n 1

Step-by-step, this would perform a single simulation of 3 populations (./sfs code 3 1). At
the end of the burn-in, the ancestral population splits into two populations (e.g. the chimp and
human-Neanderthal ancestor: -TS 0 0 1). After 8 × 2N generations, humans and Neanderthals
split (-TS 8 1 2). After another 2N generations, the Neanderthal population suddenly goes extinct
(-TE 9 2). Finally, after a total of 10 × 2N generations, the simulation ends, so we sample 1
individual from each species (including the extinct one).

Rather than have the Neanderthal population suddenly go extinct, it might be more useful
to have them die out at an exponential rate, or something. Just as in section 4.1, we could add a
growth (or death) rate of population 2 to -2 at time τ = 8.5 using -Tg 8.5 P 2 -2.

After simulating data, one could use convertSFS CODE to analyze patterns of shared hap-
lotypes, patterns of ancestral and derived alleles, etc. One could also consider humans and Ne-
anderthals to be two populations with very high rates of migration, but negative selection acting
strongly on the Neanderthal population until they are “bred out”.

7 Using SFS CODE on a Cluster

7.1 Your own Cluster

Any large scale simulation study cannot be performed without a large number of processors. Even
coalescent simulations require a cluster in some situations, such as when using approximate like-
lihood techniques [e.g. Hernandez et al. (2007a); Caicedo et al. (2007)]. However, if you do not
have access to a cluster, or are unfamiliar with how to run jobs on a cluster, then this section will
be insufficient for you (try the next section, which deals with using the CBSU cluster at Cornell
University).

Being a forward simulation, SFS CODE works well when identical jobs are sent to multiple pro-
cessors, as they are all run independently. However, because the burn-in period takes a considerable
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amount of time, it is often beneficial to run several iterations on each processor (to take advantage
of the short successive draws after the burn-in, as shown in figure 1). It therefore becomes a balance
between the number of iterations to run on each processor versus the number of processors at your
disposal to provide the most efficient results.

Let’s consider the case where you want to run 2000 iterations of a single simulation. One
way to complete the task is to split it up into 200 jobs, each of which runs 10 iterations. Each of
the 200 jobs can then be submitted to a different processor successively. When all the processors
have written their output, you could concatenate all 200 output files into a single file for analysis.

Setting the Seed

When running simulations on several processors simultaneously, there is a very nontrivial proba-
bility that some jobs will start at the same time. These jobs would then have the same seed for
the random number generator, and would therefore produce exactly the same results. This is very
bad, every simulation must have a different seed. For any given simulation, you can change the
seed using the following option.

--seed (-s) <value> random
number
seedDepending on the configuration of your cluster, you may be able to generate a SEEDFILE with 200

lines (using perl or the system defined RANDOM shell variable), each line containing a unique seed
that each process can pluck from. Alternatively, you may need to generate a TASKFILE with 200
lines, each line containing the entire SFS CODE command, but with a unique seed. In the latter
situation, you could use another program (written using MPI) to dynamically distribute each of the
tasks across the available processors (not provided, but these so called “master-slave” algorithms
are commonly used and can be downloaded from other sources).

Setting the seed is also useful if you ever want to reproduce a set of simulation results exactly.

Distributing the Work

Included in the distribution of SFS CODE is an example perl script (genSEEDS.pl) for generating
unique seeds (the SEEDFILE), an example perl script (makeTask.pl) for creating a TASKFILE, and
an example shell file (run sfs code array.sh) that could be used to run an array of jobs on
a Sun Grid Engine Cluster. See comments in these files for more details. If you use something
other than the Sun Grid Engine (SGE), then you are on your own (unless you are using the CBSU
clusters described in the next section), as I am probably not familiar with it.

Assuming that you have already compiled the program and know where it is located on the
cluster, you should be ready to generate some data. Change directory to the folder containing
the 3 files mentioned in the previous paragraph. The basic procedure would be to generate the
SEEDFILE:

perl genSEEDS.pl <Nseeds>

where <Nseeds> is the number of simulations you want to perform. Next, if you want to do several
simulations, with each one varying a certain number of parameters, it might be helpful to make a
TASKFILE:
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perl makeTask.pl

Note that makeTask.pl will have to be updated to incorporate the parameters that you are inter-
ested in. Next, you will want to update the shell file run sfs code array.sh to either extract
information from the TASKFILE or to contain the specific SFS CODE command that you want to
simulate. Finally, you will want to submit the shell file to the cluster.

7.2 Using SFS CODE on the CBSU Cluster

SFS CODE has a dedicated webpage at http://cbsuapps.tc.cornell.edu/ sfscode.aspx. From
here, it is possible to submit your simulation jobs to the cluster hosted by the Cornell University
Computation Biology Service Unit (CBSU). The interface is simple. Enter your email address
(to have a link with simulation results emailed to you), and a single set of SFS CODE arguments.
All you have to do is indicate the total number of populations you want to simulate (Npop), the
total number of successive simulations that you would like to run on each process (Niter), the
total number of repetitions you want to run (Nrep), and the total number of nodes you want to
use. Then, copy-paste your command-line arguments into the text box. A total of Nrep×Niter
simulations will be run automatically, each with a different seed. You can only paste a single line
into the text box. Running several different sets of simulations requires submitting several jobs.

The command will then be distributed across the requested number of processors. Upon
completion, output will be concatenated into a single file, zipped, and stored on a server until
downloaded (a link to the location will be emailed to you). Depending on the number of jobs in
the queue, your job may take up to a few days to begin.

The CBSU clusters have a 24 hour time limit. This means that any job that you submit to
the cluster must be completed within 24 hours. It is good practice to become familiar with the
length of time that your job will take by running a few iterations locally (also helpful to ensure
that your command-line works). You could then multiply the average amount of time per job by
the total number of tasks you wish to perform and divide by the total number of processors. If this
is greater than 24 hours, consider splitting the job into two or more sets.

8 Understanding the Output

A lot of information is stored during the course of an SFS CODE simulation that will be useful in
many different situations (yet useless in others). Unfortunately, this makes for a lot of output. In
order to make the output file as concise as possible, a fairly complicated format is needed. However,
I’ve also produced convertSFS CODE, a program that will convert the SFS CODE output to a more
useful format (see next section). However, it is important to know all of the information that is
contained in the output in the event you want to perform a type of analysis that has not yet been
implemented in convertSFS CODE. An example of the output looks something like the following:
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./sfs_code 1 2 -L 2 66
SEED = -382034166
//iteration:1/2
>locus_0
GTTCCAGGAAGCTGGACAGTCTCTTATGGCGACATGGTAAATAAATTTGCGGTCCTGAAATCGGGT
>locus_1
AATGGGTTAGATTATGATTATGTGCATCGTCTTTACACGAGTGGAGTCATTCGACTTTTCGTACTA
Nc:500;
MALES:3;
0,A,24,-237,0,TTA,A,1,Y,N,0.0,2,0.1,0.8;
//iteration:2/2
>locus_0
TTTTCAGTCTGTTTTGTCAAAGATTATTCTTTTGGGCTCCTCACGCACCTTAAGAAGTGTATATAC
>locus_1
TACGCTATCAACTACAATATACATAGTGTGGTTTTCGATGGCCTTAGGTCAGTTGACCTACGTAAC
Nc:500;
MALES:3;
1,A,28,-523,0,GTG,A,1,V,E,0.0,2,0.1,0.3;

The first line has the command line used to call SFS CODE. In this case I’ve asked SFS CODE
to generate two iterations of a single population, with two loci, each of length 66 basepairs. The
second line includes the value of the seed for the random number generator (this can be used to
reproduce the results, though the version used to generate this output may be different from the one
you are using so you may not be able to reproduce this output exactly). The third line starts the
results of the simulations. Each iteration that is simulated starts with “//iteration:”, followed
by the iteration number and the total number of iterations being performed. The fourth line starts
a fasta-style representation of the nucleotide sequences at each locus. The next line reports the final
population size (Nc) of each population in a comma delimited list terminated with a semi-colon.
The next line (“MALES:”) provides the index for the first male that was sampled (not the number of
males in the sample), in this case indicating that individuals 3, 4, and 5 are male while individuals
0, 1, and 2 are female (note that these are diploid individuals, so chromosomes 0-5 belong to
females and chromosomes 6-11 belong to males). The next line starts the information regarding
every mutation that contributes information to the sampled sequences in a comma delimited list
terminated with a semi-colon. There are at most 20 mutations per line, so mutations can span
several lines. The information provided for each mutation are as follows:

1. locus that the mutation arose on (zero-based)

2. ‘A’, ’X’, ’Y’, indicating Autosomal, X-, or Y-linked mutation, respectively

3. position of mutation in locus (zero based)

4. generation mutation arose (negative for mutations arising during burn-in)

5. generation mutation fixed in population (or time of sampling if segregating)

6. ancestral trinucleotide (middle nucleotide mutated, NOT CODON)

7. derived nucleotide

23



8. 0 or 1 for synonymous or nonsynonymous (respectively; 0 for non-coding)

9. ancestral amino acid (single character representation; ‘X’ for non-coding)

10. derived amino acid (single character; ‘X’ for non-coding)

11. fitness effect (this is s, NOT γ = PNs)

12. number of chromosomes (n) that carry the mutation

13-. . . comma delimited list of the n chromosomes carrying mutation

Each mutation event is terminated with a semi-colon. The list of chromosomes carrying each
mutation is reported as a decimal: p.c, where p is the population number (zero based) and c
represents the chromosome number in that population (also zero based). Take the mutation event
reported in the first iteration: “0,A,24,-237,0,TTA,A,1,Y,N,0.0,2,0.1,0.8;”. This indicates
that it occurred at the first locus (zero), which is autosomal, at position 24. This mutation arose
237 generations before sampling (i.e. 237 generations before the burn-in period ended), and was
segregating at time of sampling (sampled at time 0). This mutation was a nonsynonymous mutation
having no fitness effect, and was carried by two chromosomes (1 and 8) in population zero (the
only population simulated).

Mutations that fix in the population during the burn-in period are not recorded. If you want
to track fixations while simulating a single population, use the -TE option. Mutations that are fixed
in the sample from population p will be reported as p.-1. It is possible to distinguish mutations
that are fixed in the sample but segregating in the population using the 4th entry (the generation it
supposedly fixed). If it “fixed” at the end of the simulation, then the fixation time will be the same
as segregating polymorphisms. This can only happen if it was still segregating in the population
(as random mating would not yet have occurred).

It is generally encouraged to retain the ancestral sequence (just in case you want to go back
and re-analyze some previous simulations and need the actual sequences; e.g. to setup the observed
McDonald-Kreitman tables). However, they can take up a lot of space in the output, so you can
exclude ancestral sequences using the following option.

--noSeq (-A)removing
ancestral
sequence

from
output

By default, output will be printed to the screen. If you would rather it be written to a file,
you can use the following option.

--outfile (-o) [a] <file>sending
output to a

file The optional character ‘a’ would allow you to append to a file rather than overwriting it. When
multiple iterations are run, and output is being directed to a file, the progress of the simulation
will be printed to the error file. By default, the error file is the screen, but this can be changed
using the following option

--errfile (-e) [a] <file>sending
error

messages
to a file

This is also useful for keeping track of any error messages that arise (such as when figuring out
what might have gone wrong with a set of command line arguments).
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9 Using convertSFS CODE to Generate Useful Data

The output produced by the program SFS CODE is fairly concise, but is not the easiest file to parse.
I have therefore provided the additional program convertSFS CODE, which takes the output from
SFS CODE, and converts it to a format that might be easier for you to use. These include various
summary statistics, as well as the format required for the program STRUCTURE [e.g. Falush et al.
(2003)], and an output analogous to format used by the coalescent simulation program ms (Hudson,
2002), among others.The basic usage of convertSFS CODE is as follows:

./convertSFS CODE <input file> <option [args]>

The <input file> to convertSFS CODE is the output file from SFS CODE. The options avail-
able are outlined in Table 3. As an example, consider generating a human-neandertal-chimpanzee
alignment using a single chromosome from each. You might consider the following slightly modified
version of Example 18.

Ex. 19. ./sfs code 3 1 -L 1 66 -TS 0 0 1 -TS 8 1 2 -TE 9 2 \
-TE 10 -n 1 -o out.txt

This would generate a single simulation of 3 individuals for a locus of length 66 basepairs.
You could then use convertSFS CODE to generate a fasta-style alignment of one chromosome
using the following example.

Ex. 20. ./convertSFS CODE out.txt -a I 1 0

This would print the alignment of three chromosomes to the screen. It might look like the
following:

>it0pop0ind0locus0
GTATGTATAGGGCTTGGTATTGAAAATAGGTCCCAGGAAATCTTGACCGGCACCCAAGAGGTCATG
>it0pop1ind0locus0
GTATGTATAGGGCTTTATATTGAAAATAGGTCCCAGGAAATCTTGACCGGCACCCAAGAGGTCATG
>it0pop2ind0locus0
GTATGTATAGGGCTTTATATTGAAAATAGGTCCCAGGAAATCTTGACCGGCACCAAAGAGGTCATG

The name of each sequence indicates the iteration (“it0”), the population (“pop0”), the individual
chromosome (“ind0”), and the locus (“locus0”), followed by the actual sequence on the next line.
If you just wanted to extract a single sequence from human and chimpanzee, then you would use
the “P.I” option, which would allow you to select certain chromosomes from certain populations.
In this case, you would use “P.I 2 0.0 1.0” to indicate that you want two chromosomes to be
printed: chromosome 0 from population 0 and chromosome 0 from population 1.

Ex. 21. ./convertSFS CODE out.txt -a P.I 2 0.0 1.0

If you also want to include the true ancestral sequence of each population to be printed,
include the character ‘A’. Note that this is the ancestral sequence of a population, and not the
ancestral sequence of a pair or group of populations. It will be printed just as any other sequence
from a population, but will have “indA”, such that the chromosome identifier is ‘A’.

To generate the McDonald-Kreitman table for the human-chimp simulation, you would
use the following example.
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Ex. 22. ./convertSFS CODE out.txt --MK 1 0

This indicates that you want to use population 1 for polymorphism (the human population)
and population 0 as an outgroup to call fixed differences (chimp polymorphism is not included).
The output for this particular case is as follows: 0 0 0 2 1.0000. Not very interesting. There were
(in order of appearance) zero synonymous and nonsynonymous polymorphisms, zero synonymous
fixed differences, and two nonsynonymous fixed differences. The last value given is the Fisher exact
test p-value for the table. You can print the table to a file using the flag “F <filename>”. If you
ran several iterations, you can print each one independently using “ITS -1”. More generally, if you
just want to print the first n iterations, replace “-1” with “n”, the -1 just allows you to not worry
about the actual number of simulations that were done. By default, the outgroup sample size is
1 (e.g. using just the reference sequence to call fixed differences), but this can be changed to n
using the option “OGSS n”. This is helpful if you want to test the effect of using multiple outgroup
sequences on calling fixed differences (many sites that are apparently fixed between populations
are actually the result of sampling a common mutation segregating in one of the populations).
Finally, if you want to use parsimony to call synonymous and nonsynonymous mutations (instead
of using their true classification stored during the mutation), use “OBS”. As an example, suppose
that the file out.txt contained several simulations from two populations across 3 loci, but we
wanted the observed (i.e. using parsimony) MK table for the first locus using a sample size of 2 for
the outgroup. We could use the following example:

Ex. 23. ./convertSFS CODE out.txt --MK 1 0 F mk.txt ITS -1 \
L 1 0 OGSS 2 OBS

For printing the site-frequency spectrum (SFS), use --SFS. There are many similar op-
tions for this output. However, you can also specify the SFS of just autosomal (A), X or Y linked
SNPs (X or Y, respectively). You can also specify the type of mutations to include in the SFS (e.g.
synonymous, nonsynonymous, or both). In this case, you would use “T 0”, “T 1”, or “T 2” (re-
spectively). Non-coding mutations are considered synonymous, and will not be reported for “T 2”.
Sometimes using an outgroup to identify the ancestral state of a polymorphism under parsimony
will be wrong (Hernandez et al., 2007b). By default, the true SFS will be generated, but you can
also use parsimony (if you’ve simulated at least two populations) by including “OBS <ing> <og>
[ogsize]”, where ing is the in-group used for polymorphism, og is the outgroup used for identifying
the ancestral states of polymorphisms, and the optional argument ogsize indicates the number of
sequences to use from the outgroup (default is 1).

To produce output in a similar format as the coalescent simulator ms (Hudson, 2002), you
can use the option --ms. You can print the output to a file using F <file>, and specify the type
of mutations to output (either synonymous/non-coding, T 0; nonsynonymous, T 1; or both T 2).

Finally, you can produce the input file for the Bayesian clustering algorithm STRUCTURE
(Falush et al., 2003) using the option --structure. For this option, you can specify the cen-
timorgans per megabase (using CMMB <c>), and restrict the output to either specific individuals
(I <n> ...), specific populations (P <n> ...) or specific individuals from specific populations
(P.I. <n> ...).

It is important to note that you can use several options at once. For example, if you want to
generate both MK tables and the SFS, you can put them both in the command line. Additionally, if
you simulated several species, and want to generate the observed SFS using species with increasing
divergence, then you can just concatenate all your --SFS commands as follows:
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Ex. 24. ./convertSFS CODE out.txt --SFS OBS 0 1 F sfs1.txt \
--SFS OBS 0 2 F sfs2.txt --SFS OBS 0 3 F sfs3.txt

Table 3: convertSFS CODE Options. Any combination of
<arguments> can be used (in any order) for a given task.

long short <arguments> description
--help -h ∅ Display help menu

--alignment -a

Print sequence alignment in fasta format
[A] Print ancestral population sequence

[F <file>] Print sequences to a file
[L <n> <L1>...<Ln>] Only print n loci.

[I <n> <I1>...<In>]
Only print n chromosomes (but from all popula-
tions).

[P <n> <P1>...<Pn>] Only print specific populations.

[P.I <n> <p1.c1>...]
Only print specific chromosomes from specific pop-
ulations

[ITS <n>] Only print first n iterations

--ms -m

Produce ms-style output
[F <file>] Print MK tables to a file

[T <type>]
Extract mutations of <type> = 0, 1, or 2 (synon.,
nonsynon., or both)

--MK -M

Print McDonald-Kreitman tables
<ing> <og> Ingroup and outgroup (required)
[F <file>] Print MK tables to a file
[ITS [n]] Print each iteration [or just first n]

[L <n> <L1>...<Ln>] Only print n loci.
[OGSS <size>] Set the outgroup sample size

[N <n>]
Randomly sample n chromosomes from each pop-
ulation

[OBS]
Use parsimony to call synonymous and nonsyn-
onymous mutations

--structure -s

Print structure input
[F <file>] Print to a file
[CMMB <c>] set centiMorgans/Megabase to c

[I <n> <I1>...<In>]
Only print n chromosomes (but from all popula-
tions).

[P <n> <P1>...<Pn>] Only output specific populations.

[P.I <n> <p1.c1>...]
Only print specific chromosomes from specific pop-
ulations

Continued on next page. . .
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Table 3 – continued from previous page
long short <arguments> description

--SFS -S

Print site-frequency spectra (SFS)
[A] Extract only autosomal loci

[F <file>] Print SFS to a file
[ITS [n]] Print each iteration [or just first n]

[L <n> <L1>...<Ln>] Only print n loci.

[N <n>]
Randomly sample n chromosomes from each pop-
ulation

[OBS <ing> <og> [ogsize]]
Use parsimony to identify ancestral alleles from an
outgroup [using ogsize chromosomes]

[I <n> <I1>...<In>]
Only print n chromosomes (but from all popula-
tions).

[P <n> <P1>...<Pn>] Only output specific populations.

[T <type>]
Extract mutations of <type> = 0, 1, or 2 (synon.,
nonsynon., or both)

[X] Extract only X-linked mutations
[Y] Extract only Y-linked mutations

10 Default Parameter Values

Running SFS CODE with the default parameters will generate a sample of six diploid individuals
(12 chromosomes) under the standard neutral model assumptions of a constant population size,
absence of selection, etc. Every parameter discussed below can be changed using the command line
options described in Table 5. The full list of default parameter values are given in Table 4.

11 Summary of Options and Arguments

In SFS CODE, an option is a feature that allows you to change the characteristics of the simula-
tion. Every option implemented in SFS CODE is summarized in table 5. There are basically five
types of options: (1) those that control the output, (2) those those that affect all populations or
set foundation for the simulation (“Global Options”), (3) those that may be population specific
(“Population Options”), (4) those that describe the effect of natural selection, and (5) those that
govern the demographic events (“Evolutionary Events”). All options (except evolutionary events)
have both a long name (preceded by two dashes) and a short name (a single character preceded
by a single dash), which can be used interchangeably (e.g. you could either use “--theta 0.01”
or “-t 0.01” to set the population scaled mutation rate to 0.01 for all populations). Most options
have arguments. Arguments that are required are enclosed in <angled brackets>. Arguments
that are optional are enclosed in [square brackets].

Some options apply to all populations (e.g. the length of the simulated sequence -L), and
some apply only to a specific population (such as the generation effect -G). Others default to all
populations, but allow you to specify a specific population. These are denoted by [P <pop>] in the
argument list. This means that you can add the character ‘P’ followed by the number of a specific
population to apply the option to that population exclusively. For example, if you are simulating
two populations, one of which is twice the size of the other, you might add “-N P 1 1000” to your
command line.
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Table 4: Default parameter values used in SFS CODE.
Parameter value
Effective population size 500
Ploidy 2
Allo- (0) or Auto-ploidy (1) 0
Relative size of female population 0.5
Sample size for each population 6
Migration between populations 0.0
Probability male migrates (if migration) 0.5
θ/site 0.001
Substitution model 0
Number of mutation rate classes (sites) 1
Number of mutation rate classes (loci) 1
Infinite sites? 0
ρ/site 0.0
Number of loci 1
Length of locus (bp) 5001
Linkage within loci 0.0
Annotation C
Sex chromosome? no
Self-fertilization rate 0.0
Selection distribution 0
Proportion of loci subject to selection 1.0
Non-lethal mutation rate 1.0
Initial burn-in period (×PN) 5
Burn-in period of subsequent iterations 2
Print ancestral sequence? yes

Generally speaking, options can be used in any order. The exceptions are --linkage,
--annotate, and --sex, which must come after -L if -L is used (if -L is not used, then order
really doesn’t matter). However, arguments for each option are in a specified order, and must
always be used in the proper order.

Table 5: SFS CODE Options

long shorta <arguments> description

O
u
tp

u
t

--help -h ∅ Display help menu. (p3)
--noSeq -A ∅ DO NOT print ancestral sequences. (p24)

--outfile -o [a] <file>
Write [or <a>ppend] output to a <file> in-
stead of the screen. (p24)

--errfile -e [a] <file>
Write [or <a>ppend] error messages to a
<file>. (p24)

S
e
le

c
ti

o
n --selDistType -W∗ [P/L] <type> [arg]

Distribution of selective effects. (p10, Ta-
ble 1)

--neutPop -w∗ <pop> No selection on population <pop>. (p11)

--constraint -c∗ [P/L] <f0>
Set the proportion of non-lethal mutations to
<f0>. (p12)

Continued on next page. . .
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Table 5 – continued from previous page

long shorta <arguments> description

G
lo

b
a
l
O

p
ti

o
n
s

--BURN -B <burn> Burn-in time for initial population. (p4)

--BURN2 -b <burn>
Burn-in time for subsequent simulations.
(p4)

--length -L <R> <L1> [<L2>..] [R]

Simulate <R> loci (regions) with lengths <L1>

[<L2>... opt.; add ‘R’ after a subset of lengths
to repeat]. (p5)

--linkage -l <p/g> <d1> [<d2>..] [R]

Set linkage between adjacent loci (either
<p>hysical, or <g>genetic distance) to <d1>

[<d2> ..<dR-1> opt.; add ‘R’ to repeat pat-
tern]. MUST USE AFTER -L. (p5)

--annotate -a <a1> [<a2>..<aR>] [R]

Annotate each locus as C (coding) or N (non-
coding) [<a2>..<aR> opt; add ‘R’ to repeat
pattern]. Note: If coding (default), length
will be rounded to nearest codon. (p6)

--sex -x <x1> [<x2>...] [R]

Annotate sex loci, either 0 or 1 (autosomal
or sex, resp.). Use only <x1>, or specify each
locus, or put ‘R’ at end to repeat a subset.
Only implemented for the diploid case (P=2).
Males do not recombine at sex loci. (p6)

--ploidy -P <ploidy>

Set the ploidy of all populations to <ploidy>

(1,2,4 only; i.e. haploid, diploid, or
tetraploid). (p7)

--tetraType -p <0/1>
If P=4 (tetraploid) assume auto- or allote-
traploid (0 or 1, resp.). (p7)

--substMod -M <mod> [args] Set the mutation model. (p15, Table 2.)

--INF SITES -I ∅
Avoid multiple mutations segregating at the
same site concurrently. Multiple hits can still
occur for long divergence times. (p15)

--seed -s <int>

Set random number seed to <int>. This
should always be set manually if using this
program on a cluster!! (p21)

P
o
p
u
la

ti
o
n

O
p
ti

o
n
s

--theta -t∗ [P <p>] <θ>
Set the PER SITE population scaled muta-
tion rate to <θ> for ALL populations [or just
population <p>]. (p4)

--rho -r∗ [P <p>] <ρ>
Set the PER SITE population scaled recom-
bination rate to <ρ> for ALL populations [or
just population <p>]. (p4)

--popSize -N∗ [P <p>] <size>
Set all population to size <size> ’P’-ploid in-
dividuals [or just population <p>]. (p6)

--sampSize -n <SS1>..<SSNPOP>

Sample <SS1> individuals from population
1, ..., <SSNPOP> individuals from population
NPOP. Use the value -1 to sample an entire
population. (p9)

--migMat -m∗
A <M>

Set the migration rate to/from all pops to
<M>/(NPOP-1). (p14)

P <Pto> <Pfrom> <M> Set the migration rate entry mto,from = <M>

L <M0,1>...<MNPOP,NPOP-1> Set all entries of the migration matrix.

--pMaleMig -y∗ [P <p>] <pmale>

Set the proportion of migrants out of each
population [or just population <p>] that are
male to <pmale>. (p14)

--propFemale -f [P <p>] <pf>

Set the proportion of females in each pop-
ulation [or just <pop>] to <pf>, default 0.5.
(p14)

--self -i∗ [P <p>] <s>
Set the selfing rate <s> for ALL populations
[or just population <p>]. (p16)

Continued on next page. . .
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Table 5 – continued from previous page

long shorta <arguments> description

--KAPPA -K∗ [P <p>] <κ>
Set transition/ transversion rate ratio <κ>
(only valid for --substMod 2 or 3). (p15)

--PSI -C∗ [P <p>] <ψ>
Set CpG bias parameter (non-CpG rejection
rate; only valid for --substMod 1 or 3). (p15)

--rateClassSites -V [P <p>] <nclasses> <α>
Mutation rate variation among sites in loci
(discrete Gamma model of <nclasses> classes
with rate <α> and mean 1). (p16)

--rateClassLoci -v [P <p>] <nclasses> <α>
Mutation rate variation among loci (discrete
Gamma model of <nclasses> classes with rate
<α> and mean 1). (p16)

--GenEffect -G∗ <pop> <G>

Generation time effect. <G> > 1 makes <pop>
experience <G> rounds of mating each gener-
ation while if <G> < −1 mating occurs only
every |<G>| generations. <G> must be an in-
teger, with <G> > 0 or <G> < −1. (p17)

E
v
o
lu

ti
o
n
a
ry

E
v
e
n
ts

-Td <τ> [P <p>] <ν>

Discrete population size change at time <τ>
with magnitude <ν> = Nnew/Nold, where Nold
is the size of <pop> prior to the event, NOT
ANCESTRAL! (p6)

-Tg <τ> [P <p>] <α>
Set the exponential growth rate of a popula-
tion to <α> at time <τ>. (p7)

-Tk <τ> [P <p>] <K> <r>

Logistic growth at rate <r> beginning at time
<τ> until final population size <K> is reached.
(p7)

-TE <τ> [p]
Terminate simulation [or just a population]
at time <τ>× PN0. (p8)

-TS <τ> <i> <j>
Split population <i> at time <τ>×PN gener-
ations to found population <j>. (p13)

-TD <τ> <i> <j> <f> <N> [l]

Domesticate population <j> with <N> indi-
viduals from <i> at time <τ> using a derived
allele at frequency <f>±5%. (p13)

aAsterisk in short name indicates that the parameters can be changed (or option initiated) at any time using
-T<short name> <τ> <args>. See Section 4.6 on page 17.
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